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ABSTRACT

Binary testing concerns finding good algorithms to solve

the class of binary identification problems. A binary

identification problem has as input a set of objects, including

one marked as distinguished (e.g., faulty), for each object an a

priori estimate that it is the distinguished object, and a set of

tests. Output is a testing procedure to isolate the

distinguished object. One seeks minimal cost testing procedures

where cost is the average cost of isolation, summed over all

objects. This is a problem schema for the diagnosis problem:

applications occur in medicine, systematic biology, machine fault

location, quality control and elsewhere.

In this paper we extend work of Garey and Graham to

assess the capability of a fast approximation rule, the binary

splitting rule, to give near optimal testing procedures when the

priori estimates are arbitrary. We find conditions on the test

set such that-the approximation error reduces nearly to that of

the equally likely a priori estimate case of Garey and Graham and

find another upper bound on approximation error for the same test

set conditions which works very well under a priori estimate

assumptions where the first result is poor.

1
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Performance Bounds for Binary Testing

With Arbitrary Weights

1. Introduction.

The binary testing problem is a special case of a general

diagnosis problem where one seeks to find the true culprit (say,

disease) from among n candidates. The general problem has been

studied for many years, using Bayesian statistics, decision

tables, information theory and other methods. (See Payne and

Preece [91, who give a survey of the entire area.) Here we

continue an investigation into the, binary testing problem

undertaken by Garey and Graham [51. (Earlier work on binary

testing was done by many, e.g. Chu ill, Slagle 1121,

Garey 12,3,41; related work has been done by Reinwald and

Soland [111, and, recently, by Moret et al. [81.)

Binary testing is the task of finding good algorithms to

solve individual binary identification problems. A binary

identification problem consists of:

a) a set 0 of n objects Ol,...,On' some of which may be

distinguished (e.g. faulty) objects;

b) a corresponding set of n a priori probabilities Pi (also

called object weights), satisfying Pi > 0 where p, is

regarded as the a priori likelihood that oi is a

I distinguished object;



c) a tesnt Set ~'*{ 1 .. T)of mn distinct tests over 0,

each test T identified with a different subset S of 0

such that T responds "yes" if a distinguished object Is

in S; otherwise T responds "no".

We henceforth assume that there is precisely one

distinguished object in 0. Thus we also stipulate that I pi - 1

For any test T we write T(o) - 1 (or o e T) iff the distinguished

-' object is in the subset associated with T; otherwise T(o) - 0 (or

o $ T). Which object actually is the distinguished object

* influences neither the specification of the binary identification

problem or its solution (see below), because which object is

distinguished is considered unknown and we seek a procedure to

isolate it.

Further assumptions we make are that we have an adequate

test set to isolate any object as distinguished, and that all

tests have unit cost of application.

A solution to.a binary identification problem is a binary

decision tree that is a procedure for applying tests to determine

the distinguished object. A solution is called a testing

Procedure. (The decision tree is also called a solution tree.)

A decision tree is simply a tree graph of the possible paths to

follow to isolate the distinguished object; each path is a

sequence of tests and each arc from a node is chosen by the

outcome of the test that labels the node. The test labeling the

root is always the first test applied. Each leaf is labeled by
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an object name, which denotes the object isolated by the test

outcomes on the path to that leaf. (We often shall replace an

* object name by its object weight at a leaf, whenever clarity is

not impaired.)

The value of a testing procedure is its expected cost.

The expected cost of a testing procedure is

n
J, pi li

where 1l1 is the path length to object oi, i.e., the number of

tests executed to isolate o i as dletermined by the testing

procedure.

Figure 1 presents a binary identification problem and a

testing procedure with its expected cost.

In this paper we are concerned with better understanding

how well a well-known algorithm for producing testing procedures

does in general circumstances. The reason for study in this area

* is the general importance and wide applicability of the diagnosis

problem, of which the binary testing problem is an important

.1restriction. The reader is referred to an excellent survey by

I Payne and Preece 191 where references to applications in biology,

medicine* machine fault location and pattern recognition are

1 given, along with outlines of many approaches to finding good

testing procedures. Understanding the binary testing problem

took a big step forward with Garey (21#,[41 where it was shown how
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to obtain testing procedures with minimal expected cost by use of

dynamic programming algorithms. However# these dynamic

programming algorithms have running time exponential in the input

size (usually dominated by the listing of the tests) in the worst

case. Hyafil and Rivest [61 show that the binary testing problem

is NP-hard (also see Loveland [71), which (many people believe)

implies that the finding of optimal testing procedures must take

exponential time in the worst case. This focuses attention on

approximation algorithms for finding testing procedures, which

attempt to obtain good, but not always optimal, testing

procedures relatively quickly. Garey and Graham [5] studied the

binary splitting algorithm for finding testing procedures for

binary identification problems because this algorithm is the

essence of several algorithms offered by earlier investigators.

It is this study of the performance bounds for the binary

splitting algorithm (defined below) that we extend.

We start with some needed definitions.

If S 9 0 then let I(S) - fib 1i e si

and let

p(S) Pie
ieI (S)

Also, for test T let

p (T) ieie(T)



where IMT fl {i eTl.

The binary splitting algorithm is a rule for choosing a next test

to apply at any decision point in the testing procedure. if

S SO and S contains the distinguished object, choose the testT

that minimizes

I (p(sfT )/p(S)) -1/21.

The rationale for the binary splitting algorithm may be apparent

to every computer scientist; it embodies the *divide (evenly) and

conquer* approach. For the binary testing problem with unit cost

tests it maximizes the reduction in uncertainty. Thus it is the

restriction of various entropy-based splitting rules.

The binary splitting algorithm does not always determine

a unique testing procedure because several tests may meet the

selection criterion at a given point. We will consider the class

of all testing procedures meeting the binary splitting algorithm

* condition.

The testing procedure of Figure 1 is a binary splitting

testing procedure. So is the testing procedure of Figure 2,

which is for the same binary identification problem and yields a

better expected cost. Thus we see both that the binary splitting

algorithm need not specify a unique testing procedure and that

such a procedure need not be optimal.
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In Section 2 certain known results are reviewed including

Wthe results of Garey and Graham which our results extend.

Section 3 gives an example due to Garey and Graham that shows how

bad the splitting algorithm can be for arbitrary weights. Our

results follow in Sections 4 and 5.

2. Some Known Results.

It is not possible to give all the known results 'hat

relate to binary testing; a fuller summary appears in Payne and

Preece [9].

A test set Z is complete iff (if and only if) for any

set SSO (the set of objects) there is a test T e such that TaS

or 0-T-S. If a complete test set is given, there is an algorithm

(essentially the Huffman code algorithm) that determines the

optimal testing procedure for arbitrary object weights. The

algorithm is linear in the input string length if the input

object weights are ordered so the task of quickly finding minimum

expected cost testing procedures is solved in this case for the

restricted problem we consider. (When tests have different costs

the computation becomes much more complex, but this problem has

been tackled; see Picard [101.)

The works of Garey [41, Garey and Graham [51, Hyafil and

Rivest [61, etc., discussed earlier concern the incomplete test

set problem. It is here that the binary splitting algorithm is

used. The importance of the work of Garey and Graham [5] is that



they determined a strong bound on how poorly the binary splitting

testing procedures could perform relative to the optimal testing

procedure when the object weights are equal. intuition and

experience with specific problems led most knowledgeable people

:lj to believe that the splitting algorithm would always produce

good, if not perfect, results, especially for the equal object

weight case. We shall state the results of Garey and Graham and,
;J

in the following sections, pursue the same question when the

* object weights are arbitrary. There the results perhaps are as

surprising as the Garey and Graham results for the equal object

weight problems.

Given a binary identification problem with (an

incomplete) test set 'T of unit cost tests, let K denote theopt

expected cost of an optimal testing procedure, let K denote the

expected cost of the lowest cost binary splitting procedure and

let K' denote the expected cost of the worst (highest) cost

binary splitting procedure.

The following results are proven in Garey and Graham (51.

We write log n for 10g2n.

Theorem 1 (Garey and Graham). There exists a binary

identification problem of n objects with equal object weights

such that

K >1 lo n .
I ~ op 1 og log n
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Theorem 2 (Garey and Graham). For any binary identification

problem of n objects with equal object weights, if at most

c log n tests are required to identify any object in the optimal

testing procedure, then

K' 2cloqn +2c+22
-- 1 + log c + log log ni Kopt.-

Apt lemma used by Garey and Graham to prove Theorem 2 is

stated here also because we will have cause to refer to it. We

use fSI to denote the cardinality of set S.

Lemma (Garey and Graham). For a binary identification problem

with n objects of equal object weights, if for some r,

0 < r < 1/2, test set X satisfies the following condition:

for all S9O such that ISI >2, there exists T eT such that

rJsJ JsnT I (1-r) lsI,

then

Kog n + l-rK' r log(l/r) r

The special case of simply binary identification problems

warrants mention because of the type of test employed. A

singleton test responds positively to precisely one element, in

set notation, T a {o}. We consider test sets employing

singleton tests later in this paper. A simple identification
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problem is a binary identification problem with every test a

singleton test. Because the test set must be adequate an n

object simple identification problem must have n-i singleton

tests, at least. For this class of binary identification

problems, a fast algorithm is known for producing optimal test

procedures for arbitrary cost test sets (see Garey [31). For a

related problem where at most one distinguished object exists,

see Chu [11.

3. The General Case.

Garey and Graham (private comiqunication) have discovered

that the binary splitting algorithm can perform very badly

relative to the optimal case under arbitrary object weights in

the incomplete test set situation. The following example shows

that there is a family of binary test problems such that

IC n
Yopt >

for the n object member of the family. Since all reasonable

testing procedures have expected cost no greater than n-l, this

result is about as bad as could be expected. (A reasonable

testing procedure would eliminate at least one object from

consideration with each test so no path would have more than n-1

tests.)

Lower Bound on Worst Case (Garey and Graham). For pedigogical



purposes it is convenient to let n be even, i.e. nm2m+2, m_>o,

and to utilize a parameter 6 regarded as a small positive real

number.

SObiJect Obiect weight

00 1-e

0 2k-l' 14 k(_ 2 " (k+l) e

O2k , l~k<_a 2
- (k + l) e

0~~ 2- el
22(31)1

Tests

To a 0 universe

T a o-om1 {02k-1: lkcm

2 - {2k: 1ck<m}

T3  t 01,02)

Ti - {o215,o2i-4) 34im+2

T,+3- 10+l)

I
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We first find an upper bound for K 0. First, consider a

path to isolate o0. Assuming o0 is the distinguished object we

see that T1 then T2 then Tm+3 eliminates all other candidates and

so defines an isolating path. Every other object can be isolated

within m+l tests after T1 or T1 or T2 are applied. Thus

(*) Kopt 3 (1-e) + e(m+3)

-1 24 fore (e+3) <
n

We now consider a lower bound for K . Every test except

T has weight less than 1/2 for sufficiently small el indeed,

i0

choose the test other than T with the largest weight. Test T

has weight 2-e whereas tests T 1 and T2  have weight

(21 - 2(3+2)) e, as is most easily seen by observing that

T1UT 2UTm3  has weight e, that T1 ,T2 and are disjoint and

that T1 and T2 are symmetrical. Let us suppose the test responds

negatively. Then, in like manner, over the set 0 - {Ol,21, T4

has most weight. Suppose this test result is also negative.

Then we continue in this manner. Thus the binary splitting

algorithm selects, in order, tests T3 ,T4,T5 ,...,Tm+ 2,Tm+3 in

order to isolate o0 . A positive response anywhere along this

path would lead to isolating other objects with path length at

least one. Thus

(**) (1-e)+
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n for e < 1/4, n > 8.

Putting (*) and (**) together, we have

n -f o r e,42 0 n > .
opt n n8

4. Singleton Tests.

In the last section we saw that for arbitrary object

weights the relative performance ofbinary splitting procedures

to optimal procedures can be about as bad as can be contemplated.

In Section 2 we saw that the same ratio K'/K for equal objectopt

weight problems was poorer than expected but not nearly so bad.

In this section we find an interesting restriction of the

arbitrary object weight problem set where the ratio K'/Kopt  has

nearly as good a bound as the equal weight case. The restriction

is that the test set include all singleton tests.

A test set T is singleton complete if all singleton

tests are present in 2. We shall label the test {oil by Tsi.

We recall that here all tests have unit cost and that

log x denotes log2x.

We state the first result.
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Theorem 3. Given a binary identification problem with n

objects, n > 2, weights pl...,pn and a singleton complete test

setT such that some test procedure requires at most c log n

tests to identify any object, then

Re 2c log2 n
<C10 2  + 2c log n

K o 1 + logc + log log n

The upper bound here is seen to differ from the Garey and

Graham result by the multiple log n. Curiously, this comes not

from the bound on K' but from the lower bound on Kopt. A minor

(but important) distinction also is that we do not want to

require the optimal test procedure to identify any object in

c log n tests but only require some test procedure to have this

property. When arbitrary weights are involved a non-optimal

procedure may have this property when an optimal procedure does

not.

To obtain this result we use a modification of the lemma

of Garey and Graham stated at the end of Section 2.

Lemma. Given a binary identification problem with n objects,

if there exists an r, 0 < r < 1/2, such that for each SSO with

ISI 2 either

(a) There exists a Tsi e Tsuch that



p(S n TS) > 1/2

p (S)

or

(b) There exists a Te2 such that

r. p(S) I p(S lT) (1-r).p(S)

then

!-r lo (1/r) r

Proof of Lemma.

The proof is by induction on n. The result is seen by

inspection to hold for n-l, n-2, and n-3. (Note for n-3 that

K' < 2.) We show that the lemma holds for each no t 4. To begin

the induction step proof we may assume that the lemma holds for

all n < no. Assume the hypotheses of the lemma hold for no  and

that the binary splitting algorithm generates a test procedure.

The first test splits 0 into S and I of weight p(S) and p(')

respectively. KS ( Ks) denotes the expected number of tests

required for S(S) by the algorithm.

We suppose that S and I are determined by condition (a)

of the lemma and that Tsi is the singleton test such that

S - oflT.i and p(S) 1/2. Here K - 0 because 181 1.

Therefore,

i
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K < (1-pCS)(K+1) + p(S) - (1-p(S)) KI + 1.

By the induction hypothesis

(1-p(S)) loq(n-l) + ) + 1- log (1/r)

1/2( l*og(n-l) +1-r ) + 1
<_.]./ r log (1/r) r

For 1 < 1/3, we note that -r > 2, so

K( < 1/2 ( leg (n-1) +2+1-F rlo (1/r)

< log n __+ 1-rr log (1/r) r

For 1/3 < r < 1/2, we show that the result holds for

n> 4.

n > 4,

log(n-1) > log 3

> log(l/r) , for 1/3 < r,

> 2C log(l/r).

Therefore,
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/2r log (1/r) 1

Using the induction hypothesis,

K < 1/2 (lo99(n-1) + L!r + 1- r log (1/r) r

+ 1-r

-t log (1/r) r

Since the argument is valid for any test procedure generated by

the binary splitting algorithm, the result holds with K'

replacing K.
VJ

The case that condition (b) determines S and i follows

exactly the argument in Garey and Graham [51.§

The proof of Theorem 3 is a variant on the proof of

Theorem 2 of Graham and Garey.

Proof of Theorem 3.

Consider a binary identification problem satisfying the

theorem hypothesis. We show that the Lemma holds with

Ir = clo

For convenience, let A = c log n.
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Let S be any subset of 0 with jSI P 2. We show that if

condition (b) of the Lemma does not hold then condition (a) must

hold.

1Suppose condition (b) fails for r T . hat is,

p(SnT) < !..p(S) , or

p(SfnT) > (1- ) p(S) ,all TG.

If at most LAJ (the integral part of A) tests are then applied in

any order, and all get appropriate responses, we can have a set

SA remaining such that

p(SA) > p(S)/2.

S must be a singleton set for otherwise the hypothesis is

violated that every object is identifiable within A tests by some

testing procedure. But then there exists a singleton test Tsi

such that

p(S nTsi) > p(S)/2

which is condition (a) of the Lemma. Thus the Lemma is

applicable under the theorem hypotheses.

Applying the Lemma with r 1 l/(2c log n) we get
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, 2c loss 2 n + 2clog n -1
1410g c+log log n

Since we know that Kopt > I we have our result.

In the proof of Theorem 3 we made a careful analysis of
K' but used the immediately obvious lower bound of 1 for K

opt

We see by example that there is a class of binary identification

problems that satisfy the conditions of Theorem 3 for which

Kopt < 2 regardless of the number of objects in 0. Thus the

lower bound cannot be improved. (It Is clear that for this class

the ratio K'/K is not close to the bound of Theorem 3. We
opt

consider this after stating the example.)

Exasplez The binary identification problems given here satisfy

the hypotheses of Theorem 3 with c - l+e(n), where

lia e(n) - 0, and have Kopt 2.

Consider 0 - 1ol0.,6on with pi = 2-i1 < i < n-l, and

pn 2-(n-l) All possible tests exist.

The potentially complete binary tree (where the minimum

and maximum path lengths to leaves differ by at most one) is a

possible, but non-optimal, testing procedure where every object

j is identifiable using F log n i tests. (Here f m - the least

integer not less than i.) The expected cost here is O(log n).

In Figure 3 we present an alternate procedure with much

lower (indeed optimal) expected cost. This is the testing

'I
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procedure that is found by the binary splitting algorithm. The

tree is long and thin (we will call it a vine; see next section)

but this allows the larger weights to get closer to the root

which can often result in the lowest expected cost. For this

testing procedure we have

n-l
K C ( Z i 2 t ) + (n-) 2 (n- l) 2.

,i-

Thus Ko 2, uniformly in n.opt

5. Vine Testing Procedures.

The binary identification problem considered at the end

of the last section points up a weakness of Theorem 3. There are

binary identification problems where the optimal testing

procedure has a long and wthin" decision tree which leads to a

very small expected cost. The binary splitting algorithm often
:1

finds such a testing procedure which means that the bound given

by Theorem 3 grossly overestimates the ratio K'/o (if one isopt

even fortunate enough to satisfy the Oreachability' hypothesis).

In this section we prove a theorem that gives another upper bound

on the expected cost for the binary splitting testing procedures.

This bound is particularly useful in those cases where Theorem 3

is least useful, namely, when. the optimal testing procedure has a

long and thin decision tree.
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The theorem also leads one to conjecture that Theorem 3

is not a strong upper bound because the binary identification

problems where K op constant regardless of problem size are

seen to have upper bounds on 91 veil below that given by Theorem

3. (We conjecture that the upper bound for K'/Kop for binary

*1identification problems with arbitrary object weights and

singleton complete test sets is the same as the equal object

weight case established by Garey and Graham.)

The theorem also has some intrinsic interest as a theorem

on weighted binary trees.

The testing procedures we study here are vine procedures.

A vine is a binary tree where all interior nodes lie on one

branch. (We observe that for decision trees all interior nodes

* have two sons.) The tree of Figure 3 is a vine. For a vine each

interior node is adjacent to (at least) one leaf node. A vine

procedure is a testing procedure whose decision tree is a vine.

An optimal vine procedure is a vine procedure such that if

w wi and wji are weights that label leaves,, and wvi > wtthen thew

leaf is closer to the root than is the w j leaf.

A binary identification problem with a singleton complete

test set always has an optimal vine testing procedure, although

many times the procedure may have relatively high expected cost.

However, we have noted that when the object weights are quite

skewed the optimal vine procedure can be of very low expected

cost. it would be nice to relate the vine procedure to the
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binary splitting procedures, especially as follows: the optimal

vine procedure expected cost (Kv ) and any binary splitting

procedure expected cost (KBS) satisfy KBS 1 KV .  Unfortunately,

this does not always hold as Figure 4 shows us. However, this is

the nature of the result we seek since this would give a good

bound on binary splitting procedures when the best testing

procedures have long and thin decision trees.

Although we cannot realize KBS I KV we are able to show

that matters do not get worse than is suggested by the example of

Figure 4.

Theorem 4. For any binary identification problem where the test

set T contains all singleton tests and for any binary splitting

testing procedure for this problem we have

K BS I + 1

where KS is the expected cost for the binary splitting procedure

and KV is the expected cost for the optimal vine procedure.

In particular, for any binary identification problem with

a singleton complete test set we have K' Kv + 1, where K' is

the worst case expected cost for binary splitting procedures.

Proof. The proof is presented entirely in terms of weighted

binary trees except for one key property of BS trees we prove
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below. Because every testing procedure is represented by a

decision tree, we may assume we are givcn a BS tree T and we

will show that the theorem statement holds by producing an

(optimal) vine tree XV such that KBS S KV + 1.

Before we can state the key property pertaining to BS

trees we require some definitions. For any weighted binary tree

(such that each interior node has two subtrees) one can choose a

leaf labeled by w and consider the path of (zero or more)

interior nodes between the leaf and the root of the binary tree

(the w-path). Each interior node on the w-path has another

subtree attached to the node, a secondary subtree of the w-path.

(In Figure 4, the .49-path on the BS procedure tree has two

secondary subtrees with one and seven leaves respectively.) We

define the leaf weight of a weighted binary tree to be the sum of

the weights of leaves of the tree.

We prove the following fact regarding BS trees; this is

the only property specific to BS trees that we need.

Fact. For any BS tree T and any weight w labeling a

leaf of TBS, every secondary subtrde of the w-path, except

possibly the subtree closest to the leaf, has leaf weight at

least as large as weight w.

We prove the Fact by assuming it false and deriving a

contradiction. Let c denote a node on the w-path where the

secondary tree has leaf weight s, s<w, and ( is not adjacent to
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the leaf (labeled) w. Node c( is the root of a tree; let the leaf

weight of this tree be t. t is the weight that is Osplit up" at

node 0. We must have w < t/2 or else the optimal split is (wot-

w) and the node w is one subtree, violating our supposition

that c is not adjacent to node w. But if t/2 > w > s, then

(wt-w) is closer to (1/2 , 1/2) than is (st-s) and would be

favored by the binary splitting algorithm. But then one subtree

to c( again would be node w, making nodes w and c( adjacent, which
violates our supposition. Thus s<w is impossible and the Fact is

proven.

The proof of the theorem proceeds by building the given

tree TBS and also the correspondingTv in stages. We define
trees AO'ZB~l'~s T =T and T0i T n T where

tres TIXB1';S2... ISn - BS "-r, 'V -Vn -=V

T is a single node tree with weight 1, and T., and Tv are the

trees of the binary splitting procedure and the optimal vine

procedure respecti Ay. The proof is by induction on the number

of stages.

The proof is better understood if we prove a restricted

case first. We shall assume that for the given XiS which we must

reconstruct that there is no w-path with a secondary subtree

whose leaf weight is less than w. We shall see that in this

case that KS i . Kvi, for all i, 1 < i < n, and KBS I KV .

To define and TV1 we begin with T0 " Let w I be the

largest weight in IBS and find the wl-path in TBs . Consider the

vine defined by this w1-path where the secondary subtrees in T
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are replaced by single node subtrees with weight equal to the

leaf weight of the secondary subtree it replaces. We call the

single node subtrees secondary nodes for the w-path. (For the BS

tree of Figure 4 the secondary nodes for the .49-path have

weights .01 and .5 assigned respectively. See Figure 5.) The

vine just defined is TBsland TVl. Let b,...,blr (where
1

rl ! 1) be the secondary nodes created in the vine defined above,

enumerating from the leaf w1 . Thus here w,bll,...phlr1 are all

the leaf weights (i.e., labels) for TBS1 and TVI.

We now construct T and TV2"To construct T from
,.BS2 ZV2- -3S2

TS]. let W2 be the next largest weight in TDS after w1 . Find

the w2-path in TBS" If w2 - w1 then w2 - b ,k some k, is

possible and then Ts2 T8 5 1 " Otherwise, the first portion of
u-BS2 Bs

the w2-Path from the leaf is contained in a secondary subtree of

the wl-path of TBS. Let blk label the secondary node in ISS1

associated with the secondary subtree containing part of the

w 2-path. We form TBS2 from 8S1 by replacing node blk by the

vine that completes the w2-path in TBS2. This vine has secondary

nodes b21 ,... b to replace secondary subtrees in T_S along the

w2-path where it is distinct from the wl-path. (See Figure 5 for

an illustration of 7BS1#!BS2, and ;V2 for the BS tree of Figure

4.)

To create TV2 from TV1 we expand b1 k in the identical way

except we must first move (the label) blk to the node (labeled)

w1 so that the expansion of node b to a vine results in another

lkL
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vine. We interchange (labels) w and blk to achieve this move.

By the Fact (and our simplification assumption) blk 1 w1 so the

expected cost K cannot be decreased by this move, since there is

a net weight change farther away from the root ("down the tree*)

if any change occurs. Now replace bik by the same vine replacing

b in the creation of T This defines Tv2 . We see that
1k T.BS2- E

KBS2 IV2 (Recall that KBSl I KV1 since T T T

The general outline should be clear. TBS is being

"reconstructed" by expanding secondary nodes so that the subtrees

are gradually rebuilt. The tree TV is gradually built by

appending all the vines used in intermediate construction of T

at the "end" of a previous vine, to preserve "vinehood'. The

general form for the restricted case can now be presented.

To construct !BSi from TBS(i-1)' locate the ith largest

weight on TBS" If wi already labels a secondary node bJk in

ES(i-I) so that the wi-path of T is present in S(i) then

TBSi T BS(i-I) and TV " TV(i-)" Otherwise, the first portion

of the wi-path must replace the node bJk where the wi-path Joins

the portion already present in T BS(t-1)" Again, secondary nodes

with appropriate weights represent the secondary subtrees of the

wi - path not yet expanded. This defines T ni" To define TVir

label bJk is moved to replace wi_ 1 at one of the farthest leaves

of TV(i-)" However, rather than placing wi,_ in the bik

location, we bump gE the weights. That is, the closest weight wa

labeling a node farther from the root than (i.e. Obelow') bJk is
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moved to the bik location. The wa location now vacant is

replaced by the closest weight below the wa location. This

continues and finally weight vi_ 1 moves to the vacant location

left for it. Thus, we observe that if wa and wb label nodes,

ab < i-l, and wa > wb, then wa remains closer to the root then

wb in all TVk" Finally, replace bik at a "bottomO leaf by the

vine added to TBS(i_) at bjk; this defines Vi

We now show that KBSi I KVi, assuming that

KES(i_) I Kv(i_I) by induction hypothesis. Since the expected

cost is a sum of components, each component the product of a

weight and its distance from the rogt, any weight displaced an

equal amount in creating -BSi and Zvi will have equal effect on

KBS(iI) and KV(il), thus preserving the inequality. Thus the

replacement of bik by the same vine in the creation of

TBSi and !Vi preserves the inequality. We must only note that

moving b to the wil location and bumping up weights preserves

the inequality. But Wq+l 1 Wq , all q I i, also bjk I wj (by

the Fact) and Vq below bik in TV(il) implies q>j. It follows

that Obumping up" results in no larger negative effect on the

expected cost than if wj were moved from the wi_i location up to

the bik location. Moving bik down to the wi_ location at least

offsets this negative effect so IKV  is not decreased by this

action. Thus KBSi ( KVI holds.

We now consider the unrestricted case where the secondary

subtree on a w-path closest to node w may have leaf weight less
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than w. if a wi-path in Ts has such a secondary subtree we

shall call it the wi- runt (or, simply, the runt), denote its

leaf weight by ai, and exclude it in our notation bilO.Pbiri

for secondary nodes of the wi-path. This means bil denotes the

leaf weight of the closest secondary subtree to wi such that

bi w i. The runt is too small to stand on its own; it will

usually be associated with another node and we proceed as before

as much as possible.

The change is easy when constructing TBSi from TS(i-1)"

If the wi-path has a runt, then attach it to the wi node, which

then has weight wi + ai - w'i . If no runt exists we let ai =0

for convenience. TBS1 then has a w'i-path with bile...bir as

before but bi, i w'j may not hold. If the w'i-path requires the

expansion of a wJ-runt# some J<i, in ;BS(i-1) then replace the

w' node by an (unlabeled) node with two sons, labeled w. and aj

respectively, and then expand the aj node as one would a bik

node.

We now consider the creation of ;v i from TV(il). There

are three cases which we enumerate. In case (ii) we shall see

that an a1 may be shifted from w' to b1 lf creating weights

wj and b'l bl + a1, respectively. Thus, in T We must

also consider bilk of form b + a A lso weights of form
jk jk+ -

w1 + ak can appear, as will be seen.

The following possibilities arise in TV(i-)" Recall

that the expansion of a node to a vine is determined by the
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expansion that occurs to create T .

Case (M). The *node* aj_1 needs to be expanded. Replace

node w'i_1 by a node with sons wi_1 and ai_1 and then expand aj_ 1

in imitation of the expansion that creates 1BSi.

Case (ii). A node bik needs to be expanded. Since w. 1 ,

rather than wVii, is to be *bumped up', move ai_1 to b(i.)l to

create b' as described earlier. (Note that the distance of(i-1)1

a 1  to the root is unchanged so the expected cost is unaffected

by this move.) Now move bik to the w node and bump up the w's

below b k's old location, as before. If b'k is bk + a 1 then do

not move a. After 'bumping up', the 61d b'jk node will have

weight w5 + aj, for some s.

Case (iii). A "node" aj, some J<i-1, needs to be

expanded. The aj is detached from its associate bik or w., the

latter left in place, and aj is moved down the vine. The wi_ 1

node is replaced by a node with sons w 1 and a . Then aj is

expanded.

We now establish the relationsip between the expected

costs of %S k and KVk. The inequality that we actually show

holds is

M <SkKVk + wh
(*) r~s - vk heR kh

for Hk9i1,...,nI, for all k, 1 < k < n. It is quickly seen from

our earlier argument that (C) holds for k-l with H1 - 0. We
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argue the induction step from i-1 to i, following the cases just

enumerated. We have by induction hypothesis that (*) holds for

k-i-i.

When Case i) occurs for TVi, TBSi has been created by

the same expansion applied to T _ so the incremental changezTBS (i-1)

to KBS(i_l) and IV(iI) is exactly the same. Thus (*) holds for

k-i with Hi1  - Hi.

When Case (ii) occurs, the shift of a to bi-l (i-i) 1

causes no consequences to the expected value and the remainder of

the action is as for the restricted case considered earlier.

Thus (M) holds for k-i with H_ 1  Hi.

When Case (iii) occurs, weight a is shifted down the

vine which increases the expected value KVi without affecting

This is fine. However, in BS(i) is part of wj and

when split to two sons, wi and aj, their path length increases by

one and so both weights are added (once) to KBS~i). In

modifying TV(i-1) wi- 1 is given an increased path length of one

and aj has a path length increase of at least one. But wj > w_11

in general so the increase to KS(i_1 ) can exceed the increase to

KV(i_) by an amount approaching wji if w_ 1 is very small. To

preserve the inequality we must add wj to the right hand side of

('). With this accommodation we see that (*) holds for k-i for

this case with Hi - 1  {jI.

i-l
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This concludes the cases we must consider, and (*) has

been shown to hold In particular for k-n. But

K s Kn and KI Kyn. !t follows that K., Kv + I since the

sum of the weights is 1.
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An alternate testing procedure for the binary
identification problem of Figure 1.
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A testing procedure with expected cost less than 2.

Figure 3



Objects 01 02 03 04 05 06 07 08 09

Weights: .49 .24 .12 .06 .05 .01 .01 .01 .01

Vine procedure

K1 f .49 + 2(.24) + 3(.12)

+ 4(.06) + 5(.05).4!
+ (6 + 7 + 8 + 8)(.01)

.24 - 2.11

.12

.06

.05

.01

v .01

.01 .01

Binary splitting procedure

KBS - 2(.49 + .01) +

3(.24 + .01) +

4(.12 + .01) +

.49 .01 4(.05) +

5(.06 + .01)

.24 .01 2.82

%i ~ Ta .01

.01

.05

.06 .01

A binary identification problem with nine objects.

Figure 4
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.49 .01.1 4

;BS 1 ;v1

.49

- 01 .01

.04 .0124

!-B S2 -7T

Construction stages associated with the tree a
of Figure 4.

Figure 5
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